绕过人墙、半路转弯 怎么在世界杯踢出超帅“香蕉球”?******
又到了四年一度的世界杯
不知道大家是否还记得
2018届世界杯中
葡萄牙和西班牙相遇的小组赛
C罗在最后时刻力挽狂澜
踢出被解说员叹为
“翩若惊鸿,宛若蛟龙”的
“C型”任意球,扳平比分
被踢出的球为什么会迅速升降?
又为什么会“拐弯”呢?
首先我们来了解一下任意球
任意球是啥?
任意球是罚球的一种。它是一种在足球(或手球)比赛中发生犯规后重新开始比赛的方法。
任意球分两种:直接任意球,踢球队员可将球直接射入犯规队球门得分;间接任意球,踢球队员不得直接射门得分,球在进入球门前必须被其他队员踢或触及。判罚前场任意球后会使用一种泡沫喷剂划定球的摆放位置,以及人墙的站位,发任意球时需要用手触球,然后在裁判哨响后踢球。
香蕉球?能吃吗?
事实上,C罗踢出的这种任意球在足球比赛中并不少见。
在1997年,在巴西对法国的一场足球比赛中,巴西足球运动员Roberto Carlos,在没有通向球门的直接路线的情况下,从35米外开出一个任意球。他的射门使球飞过球员,并在快要出界的时候急转向左,砸入球门。
图源:网络 香蕉球图解
球的突然拐弯让在场球员,特别是法国守门员根本来不及反应。这个史上最漂亮,最具标志性和最违反物理学定律的任意球,被叫作“香蕉球”。法国物理学家对此研究了数年,终于用“马格努斯效应”解释了这个问题。
马格努斯效应
图源网络
当一个旋转物体的旋转角速度矢量与物体飞行速度矢量不重合时,在与旋转角速度矢量和平动速度矢量组成的平面相垂直的方向上将产生一个横向力。在这个横向力的作用下物体飞行轨迹发生偏转的现象。这是流体力学中的一种现象。
图源:陕西师范大学物信院 马格努斯效应示意图
旋转物体之所以能在横向产生力的作用,是由于物体旋转可以带动周围流体旋转,使得物体一侧的流体速度增加,另一侧流体速度减小。
是不是听得云里雾里?
香蕉球轨迹
球在气流中运动时,如果其旋转的方向与气流同向,则会在球体的一侧产生低压,而球体的另一侧则会产生高压。运动员的用力方向朝右,所以足球逆时针旋转。拐点处足球左侧产生低压,右侧产生高压,这样就导致足球存在横向的压力差,并形成向左侧的力。
图源:NKPhysics
根据物理公式,距离越远,速度越慢,球偏离角度也就越大。因此,我们能看到在香蕉球运行的末尾时刻,会发生更剧烈的偏转,给守门员一个巨大的“惊吓”。
我也能踢出和C罗一样的球吗?
回到文章开头提到的C罗“力挽狂澜”的任意球,这一球不止踢出了上述“香蕉球”的概念,同时也混合了“电梯球”,即指大力踢出的足球,下落很快,像是从电梯上下坠,它实际上是高速飞行的足球受到重力和大雷诺数阻力下的运动轨迹。
图源: 中国物理学会期刊网 皮尔洛的“电梯球”
葛惟昆教授解释说:“踢出电梯球的一大关键要素,就是球的初始速度要快。”要踢电梯球,球的初始速度应该接近150公里/小时,没错,就是一辆车在高速公路上狂飙的速度。
图源:科学世界
研究人员在进行场景模拟时发现,要想让100公里/小时以上速度的任意球避开人墙(假定在距离约9米远的位置有5名身高1.8米的对方球员并排)成功射门,球离开地面时与地面的夹角必须控制在15°~17°之间,也就是仅有2°的精度范围(在距离球门25米的位置,踢出转速为每秒8转的侧旋弧线的情况)。
如果是足球,以每小时90千米的速度每秒旋转8转,球会在这个距离内弯曲3米以上。
图源见水印
而踢出弧线的关键在于,落脚点在偏离球心的位置,偏离球心的幅度越大,球的转速越快。有研究人员称,安德烈亚皮尔洛等优秀的任意球球员会使球的旋转轴倾斜角度大于侧旋,让马格努斯力倾斜向下发挥作用,从而踢出“球速快、大幅弯曲的同时又急剧下沉的”球路。
资料来源:科学世界、中国物理学会期刊、科技日报、天津科普说、NKPhysics
整理:董小娴
长三角最大铁路货车“医院”:妙用荧光为列车“体检”******
(新春走基层)长三角最大铁路货车“医院”:妙用荧光为列车“体检”
中新网杭州2月3日电(张煜欢)3日,在位于杭州的乔司检修车间轮轴检修区,轮轴探伤工吴洁良按下“上料”按键,泛着黄绿光的荧光磁悬液随即从探伤机喷管里倾泻而出,均匀洒落在轮轴表面。经过除锈清洗的火车轮轴锃亮如新,从北到南依次排列在四条股道上。
吴洁良所在的中国铁路上海局集团有限公司杭州北车辆段是长三角地区最大的铁路货车“医院”,负责定期检修铁路货车。其中,对火车车轴进行电磁探伤作业是工作的重要一环。
吴洁良在轮辋上涂打作业标记。 汪晟 摄如果说车轮好比火车的两条腿,那么轮轴探伤工就是给火车双腿看病的“医生”,而“荧光”就是他们探病问诊的重要工具。
“为货车轮轴做检查的荧光磁粉探伤机好比是医院里的‘X光机’,在对轮轴喷淋荧光磁悬液,通电磁化后,可以判断轮轴表面状态。”工长茹凯明说,“倘若轮轴产生裂纹、缺陷,在紫外灯的探照下会形成目视可见的磁痕,我们的职责就是及时找出这些‘伤口’,排除隐患,杜绝车轮‘带病’上路。”
随着磁粉探伤机前后遮光门帘落下,探伤间内瞬间变成了暗室,目之所及荧光闪烁,紫光灯下的黄绿色车轴清晰可见。吴洁良戴上紫外线护目镜,俯身弯腰凑近车轴端部,左手握住粉笔在轴颈上涂打起始标记,右手同步按下车轴转动按钮,静静地观察车轴上的磁化状态。
吴洁良将清洗除锈后的轮轴徒手推进轮轴探伤间。 汪晟 摄“牢记磁痕细对比,勤换视角看仔细,苦练手感摸凹凸,打磨修复防误判……”为提高发现故障的水平,班组总结提炼了磁粉探伤的作业口诀,几道步骤自始至终贯穿在吴洁良的作业过程中。
“车轴作为承载列车的关键部件,在运行过程中承受着多重复杂应力的作用,哪怕是0.1毫米的裂纹也容易酿成断轴事故,因此我们不能放过任何一条蛛丝马迹。”吴洁良说,“而且车轴磁痕通常细如发丝,往往隐藏在最让人忽视的地方,需要手、脑、眼全面调动起来。”
随着今年春运接近尾声,各行各业加快了返岗复工的脚步,全力冲刺新春“开门红”。为保障物流通道的畅通,铁路部门开足马力,加快列车周转效率,强化货车检修力度。近段时间以来,吴洁良在“小黑屋”里常常一待就是3个小时,弯腰下蹲检查上百次,给体力和眼力带来双重考验。
在吴洁良和班组的共同努力下,自农历正月初七以来,杭州北车辆段已累计检查1604条轮轴,实现轮轴“零故障”交验,确保往来货物平安抵达千家万户。
近年来,随着铁路技术装备、铸造工艺的不断提升,故障率也在逐步降低。“故障虽然少了,但始终不能疏忽大意,把好每条轮轴的质量关,是责任更是良心。”吴洁良说。(完)
(文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() |