点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:彩神ap官方|彩神ap计划
首页>文化频道>要闻>正文

彩神ap官方|彩神ap计划

来源:彩神ap交流群2024-05-20 17:48

  

9000亩高标准农田改造完成 重庆铜梁“巴岳农庄”农事忙******

  (新春走基层)9000亩高标准农田改造完成 重庆铜梁“巴岳农庄”农事忙

  中新网重庆1月16日电 (张旭)宜机化(适合机械化作业)改造的成片良田、蔬菜大棚、蔬菜挑选中心……隆冬时节,重庆市铜梁区侣俸镇、少云镇等地,大棚里的番茄、青椒恣意生长,田间各种机械正在作业,竟是一幅“春意盎然”的景象。

  上述情形,是重庆市铜梁区“巴岳农庄”试点建设的一个缩影。据重庆市铜梁区农业农村委员会副主任戴安勇16日介绍,“巴岳农庄”的部分建设项目中,包括3万亩高标准农田改造,目前已完成了其中的9000亩。

图为刘福琼向记者展示自己采摘的辣椒。 张旭 摄图为刘福琼向记者展示自己采摘的辣椒。 张旭 摄

  在位于侣俸镇保乡村的一处蔬菜大棚里,该村村民刘福琼正在采摘成熟的“螺丝椒”(辣椒的一种)、番茄等,笑得合不拢嘴。她说,每天工作8小时,可获70元工资,遇到出货量大时需加班,加班可获双倍工资。

  “螺丝椒可长至一米多高,一年可结果8个月,月月都有活计。”刘福琼说,辣椒、番茄等都是市场佼佼者,价高且畅销,对这份“家门口的工作”充满信心。另外,还有土地入股,可享受分红。蔬菜大棚的负责人周建表示,大棚采用了双层棚,冬可保温,夏可覆上黑膜防晒,利用技术达到增产提质的效果。

图为收获沃柑的村民。 张旭 摄图为收获沃柑的村民。 张旭 摄

  “‘巴岳农庄’不是一个具象的农场、庄园概念。”戴安勇介绍说,铜梁区中稳步推进农村“三变”改革基础上,坚持问题导向,在关键环节、关键领域破题革新,重点从生产力、生产关系及收入分配的深层次问题入手,提出实施“巴岳农庄”试点建设。目前,试点区域涵盖铜梁4个镇17个村,共5.9万亩土地。

  戴安勇介绍说,“巴岳农庄”由农户、村集体、国有公司、工商资本、金融资本等共同参与,通过清晰的股权架构、合理的利益分配、规范的运营机制,从而实现多方利益共赢、风险共担的乡村产业发展。

图为正在建设中的高标准农田,一侧放着输水管道的材料。 张旭 摄图为正在建设中的高标准农田,一侧放着输水管道的材料。 张旭 摄

  在少云镇海棠村,村民周笃群指着连片的田地告诉记者,2022年的大旱天气,曾让她险些遭受损失。现在,她的田地以土地入股的方式,被改造为高标准农田,已增配了输水管道、水渠等设施。“希望来年有个好收成。”周笃群说,她除了保底分红和务工收入外,还能享受到盈利(田地丰产)以后的分红。

  戴安勇介绍,2023年,“巴岳农庄”将进一步细化完善试点改革相关政策措施,加大农业招商力度,发展壮大新型农村集体经济,加快建设一批产业蓬勃发展、环境生态宜居、农民生活富裕的示范性村庄。(完)

图为铜梁区侣俸镇的大棚。(无人机图片) 张旭 摄图为铜梁区侣俸镇的大棚。(无人机图片) 张旭 摄

                                                                              彩神ap官方

                                                                              诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

                                                                                相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

                                                                                你或身边人正在用的某些药物,很有可能就来自他们的贡献。

                                                                              诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                                                2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

                                                                                一、夏普莱斯:两次获得诺贝尔化学奖

                                                                                2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

                                                                                今年,他第二次获奖的「点击化学」,同样与药物合成有关。

                                                                                1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

                                                                              诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                                                过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

                                                                                虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

                                                                                虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

                                                                                有机催化是一个复杂的过程,涉及到诸多的步骤。

                                                                                任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

                                                                                不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

                                                                                为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

                                                                                点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

                                                                                点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

                                                                                夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

                                                                                大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

                                                                                大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

                                                                                大自然的一些催化过程,人类几乎是不可能完成的。

                                                                                一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

                                                                                 夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

                                                                                大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

                                                                                在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

                                                                                其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

                                                                                诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

                                                                              诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                                                夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

                                                                                他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

                                                                                「点击化学」的工作,建立在严格的实验标准上:

                                                                                反应必须是模块化,应用范围广泛

                                                                                具有非常高的产量

                                                                                仅生成无害的副产品

                                                                                反应有很强的立体选择性

                                                                                反应条件简单(理想情况下,应该对氧气和水不敏感)

                                                                                原料和试剂易于获得

                                                                                不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

                                                                                可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

                                                                                反应需高热力学驱动力(>84kJ/mol)

                                                                                符合原子经济

                                                                                夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

                                                                                他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

                                                                                二、梅尔达尔:筛选可用药物

                                                                                夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

                                                                                他就是莫滕·梅尔达尔。

                                                                              诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                                                梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

                                                                                为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

                                                                                他日积月累地不断筛选,意图筛选出可用的药物。

                                                                                在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

                                                                                三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

                                                                                2002年,梅尔达尔发表了相关论文。

                                                                                夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

                                                                              诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                                                三、贝尔托齐西:把点击化学运用在人体内

                                                                                不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

                                                                              诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                                                虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

                                                                                诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

                                                                                她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

                                                                                这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

                                                                                卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

                                                                                20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

                                                                                然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

                                                                                当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

                                                                                后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

                                                                                由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

                                                                                经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

                                                                                巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

                                                                                虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

                                                                                就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

                                                                                她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

                                                                                大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

                                                                              诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                                                2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

                                                                              诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                                                贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

                                                                                在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

                                                                                目前该药物正在晚期癌症病人身上进行临床试验。

                                                                                不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

                                                                              「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

                                                                                参考

                                                                                https://www.nobelprize.org/prizes/chemistry/2001/press-release/

                                                                                Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

                                                                                Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

                                                                                Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

                                                                                https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

                                                                                https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

                                                                                Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

                                                                                (文图:赵筱尘 巫邓炎)

                                                                              [责编:天天中]
                                                                              阅读剩余全文(

                                                                              相关阅读

                                                                              推荐阅读
                                                                              彩神ap网址苹果高通和解后,华为5G芯片市场地位稳了?
                                                                              2024-09-15
                                                                              彩神ap开户他曾是颜骏凌的替补 与国门同场对垒仍掩盖不了他的光芒
                                                                              2024-05-12
                                                                              彩神ap注册致敬!消防员救完人 汗水冒白烟
                                                                              2024-08-22
                                                                              彩神ap充值恋爱谈多了,演技也好了,受打击也能笑着说没关系了
                                                                              2024-06-28
                                                                              彩神ap客户端下载上亿选票全靠人工计算 印尼大选270多人过劳死2千人病倒
                                                                              2024-08-08
                                                                              彩神ap漏洞 众人质疑火勇大战判罚 戈贝尔:上周我们可不敢那样防
                                                                              2024-10-07
                                                                              彩神ap下载app国产水陆两栖飞机进入型号取证试飞阶段
                                                                              2024-06-23
                                                                              彩神ap攻略巴西男模走秀踩鞋带摔倒身亡 观众误以为表演(图)
                                                                              2024-11-06
                                                                              彩神ap骗局新奔驰刚开1小时差点要了命 4S店:退车不太可能
                                                                              2024-01-08
                                                                              彩神apAPP死亡列车:文明塌陷的世界
                                                                              2024-11-08
                                                                              彩神ap官网王晓晖:扩大有效需求 加快构建现代化产业体系
                                                                              2024-07-03
                                                                              彩神apapp成都大熊猫繁育研究基地再添龙凤胎大熊猫
                                                                              2024-02-17
                                                                              彩神ap客户端 男子为得到遗产 全城征婚
                                                                              2024-01-10
                                                                              彩神ap官网网址实力大比拼,宝来、朗逸、雷凌哪家强?
                                                                              2024-04-24
                                                                              彩神ap官网平台双一流高校食堂哪家强?
                                                                              2024-10-19
                                                                              彩神apapp下载重庆公安局原局长下属被双开
                                                                              2024-07-16
                                                                              彩神ap邀请码迪奥纪梵希等护肤品降价 唇膏仅降5块
                                                                              2024-10-07
                                                                              彩神ap手机版靠黑历史频上热搜的这位美眉,素质真的有点差哦
                                                                              2024-11-18
                                                                              彩神ap娱乐中国首个“00后”围棋世界冠军横空出世 他的故事
                                                                              2024-03-29
                                                                              彩神ap手机版APP全球连线|一只“方”兔子背后的“中国意象”
                                                                              2024-05-28
                                                                              彩神ap官方网站倪妮嘟嘴卖萌霸气举枪 和张震亲密互动
                                                                              2024-11-02
                                                                              彩神ap玩法刘诗诗产子!48岁新晋奶爸吴奇隆竟然做了这种准备?
                                                                              2024-05-18
                                                                              彩神ap代理云南清水河边检站助力3万余吨境外甘蔗顺利通关
                                                                              2024-11-04
                                                                              彩神ap规则花车巡游、灯光秀……2500场文化活动贯穿世园会
                                                                              2024-08-28
                                                                              加载更多
                                                                              彩神ap地图